A simple and efficient dynamic modelling method for compliant micropositioning mechanisms using flexure hinges
نویسندگان
چکیده
In this paper we consider the dynamic modelling of compliant micropositioning mechanisms using flexure hinges. A simple modelling method is presented that is particularly useful for modelling parallel micropositioning mechanisms. This method is based upon linearisation of the geometric constraint equations of the compliant mechanism. This results in a linear kinematic model, a constant Jacobian and linear dynamic model. To demonstrate the computational simplicity of this methodology it is applied to a four-bar linkage using flexure hinges. Comparisons are made between the simple dynamic model and a complete non-linear model derived using the Lagrangian method. The investigation reveals that this new model is accurate yet computationally efficient and simple to use. The method is then further applied to a parallel 3-degree of freedom (dof) mechanism. It is shown that the method can be simply applied to this more complex parallel mechanism. A dynamic model of this mechanism is desired for use in optimal design and for controller design.
منابع مشابه
Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory
This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...
متن کاملModelling and Analysis of Three-degree of Freedom Micro-positioning Stage
This paper presents a design and analysis approach for micropositioning stage based on 3-RPR parallel kinematic linkage. The dimensions of the stage are first obtained and static, dynamic characteristics of the stage are predicted. The objective here is to maximize the workspace (for ranges of both position and orientation) and minimize the singularities inherent in the system. After arriving t...
متن کاملOn the Design Methodology of Flexure-Based Compliant Mechanisms by Utilizing Pseudo-Rigid-Body Models with 3-DOF Joints
This paper focuses on the complex design process of planar compliant mechanisms with flexure hinges. In the following a systematic methodology of the transition from lever mechanisms generated intuitively by the developer or non-intuitively by topology optimization to applicable compliant mechanism is presented. An extended pseudo-rigid-body model (PRBM) is used for the analysis and the modific...
متن کاملDecoupling Optimization of Flexure Hinge and Lever Magnifying Mechanism for an Xy Compliant Micromanipulator
The micro/nano motion stage with ultra-high precision are urgently required to perform such tasks as operation under scanning probe, bio-cell manipulation, optical fibers alighment, etc. The compliant XY micro manipulator employing flexure hinges is widely applying due to their excellent characteristics of simple structure, no backlash, no nonlinear friction, and so on [1]. Some novel compliant...
متن کاملA Novel Analytical Model for Flexure-Based Compliant Proportion Mechanisms
This paper proposes a novel analytical model for flexure-based proportion compliant mechanisms. The displacement and stiffness calculations of such flexure-based compliant mechanisms are formulated based on the principle of virtual work and pseudo rigid body model(PRBM). According to the theory and method, a set of closed-form equations are deduced in this paper, which incorporate the stiffness...
متن کامل